943 research outputs found

    High multipole transitions in NIXS: valence and hybridization in 4f systems

    Full text link
    Momentum-transfer (q) dependent non-resonant inelastic x-ray scattering measurements were made at the N4,5 edges for several rare earth compounds. With increasing q, giant dipole resonances diminish, to be replaced by strong multiplet lines at lower energy transfer. These multiplets result from two different orders of multipole scattering and are distinct for systems with simple 4f^0 and 4f^1 initial states. A many-body theoretical treatment of the multiplets agrees well with the experimental data on ionic La and Ce phosphate reference compounds. Comparing measurements on CeO2 and CeRh3 to the theory and the phosphates indicates sensitivity to hybridization as observed by a broadening of 4f^0-related multiplet features. We expect such strong, nondipole features to be generic for NIXS from f-electron systems

    Two-dimensional superconductor-insulator transition in bulk single-crystal YBa_2Cu_3O_(6.38)

    Get PDF
    We use a magnetic field to tune a highly anisotropic single crystal of oxygen-deficient YBa_2Cu_3O_(7-δ) with a transition temperature of 2 K through the superconductor-insulator transition. The sheet resistance scales with temperature, 0.05≤T≤1.0 K, and field, 0≤H≤94 kOe, in a manner predicted by a theory for quantum phase transitions in disordered two-dimensional superconductors

    The local electronic structure of alpha-Li3N

    Full text link
    New theoretical and experimental investigation of the occupied and unoccupied local electronic density of states (DOS) are reported for alpha-Li3N. Band structure and density functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS finds less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering (NRIXS), RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s- and p-type components of the unoccupied local final density of states projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final density of states due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generically applicable for low atomic number compounds.Comment: 34 pages, 7 figures, 1 tabl

    Vanishing magnetization relaxation in the high field quantum limit in YBa_2Cu_3O_(7-δ)

    Get PDF
    We have investigated the magnetic response of untwinned single crystals of YBa_2Cu_3O_(7-δ) at millikelvin temperatures using a Bi thin film magnetometer of micron dimensions. Below T=0.8 K, the magnetization relaxation rate S crosses over from thermally activated to quantum behavior. Above a sharply defined and strongly temperature-dependent threshold field, S disappears altogether. In concert with the vanishing magnetization relaxation, discrete steps appear in the magnetic hysteresis B(H), each of which corresponds to the `'stick-slip'' motion of 10^3 vortices under the magnetometer

    A Comparative Study of the Valence Electronic Excitations of N_2 by Inelastic X-ray and Electron Scattering

    Full text link
    Bound state, valence electronic excitation spectra of N_2 are probed by nonresonant inelastic x-ray and electron scattering. Within the usual theoretical treatments, dynamical structure factors derived from the two probes should be identical. However, we find strong disagreements outside the dipole scattering limit, even at high probe energies. This suggests an unexpectedly important contribution from intra-molecular multiple scattering of the probe electron from core electrons or the nucleus. These effects should grow progressively stronger as the atomic number of the target species increases.Comment: Submitted to Physical Review Letters April 27, 2010. 12 pages including 2 figure pages
    • …
    corecore